Project report for the CG 100433 course

Tongji Mapping Game

Team members

Fedl
1652526 A RH
1751876 Y 4
1754244 FRAE SR
1759266 Sophie
1753844 J75 1 ik

1. Motivation

Today’s most large-scale event venues, such as shopping malls, parks, schools, etc., mostly use 2D flat maps in
their guide. Reading such a 2D map is quite unintuitive and inconvenient, since some personnal efforts and skills
are required to identify buildings, roads and other key elements in the map. We hope we can help to bring a new
and simpler way for people to get familiar with unknown places, without the need to read 2D maps anymore.

Computer Graphics has some advantages in the purpose of reproducing 3D real scenes. Based on what we
learned during class and some background requirements, we managed to design a 3D map exploration game. We
chosed the campus of our school as an exploration ground, in which the user is given a main character perspective
to travel and discover the scene map.

At the same time, Tongji's 3D map also helps freshmen to become familiar with every corner of the campus. If
it eventually becomes even more beautiful and realistic in the subsequent improvements, then maybe in the future it

can also achieve the role of promoting our beautiful campus.

2. Goal of the project

Considering the personal capabilities of each member of the group and the realizability of the project, we fixed

a few target objectives in order to demonstrate the skills we developped with the Computer Graphics class.

2.1 First Goals

e Complete the construction of basic models of all landmark buildings, roads, and shops in a specific area of the
school to realize the simulation of the 3D campus scene. (completed)
o Observe the user from a first-person perspective in the view the map scene, so that the user's view can rise and

fall, rotate left and right, and move forward and backward. (completed)

2.2 Extensions

e The user can select a specific building’s name as target destination for the simulation to generate a red path to
it. (completed)

e Add some random moving passerby models in the simulation to increase realism of the scenes. (completed)

e Provide the user the ability to modify specific target models in the map, such as moving or destruct objects
like trees and trash cans. (undone)

2.3 Others(Other features implemented after)

e A variety of lighting are implemented and can be controlled through the user’s interaction with keyboard
® The skybox was added

e Real physics engine (collision detection, jumping, etc.)

3. Scope of the project

The scope of project’s areas and features is defined as follows:

e Because the entire Jiading campus area of Tongji University is too large for computation to be simulated, we
have limited the scope of the selected scene. After selecting the area to be modeled (the teaching buildings
region), it was decided that Tongji University overlooked by a starry sky.

e In order to reduce the modeling workload, the regions of space that cannot be seen by the user from every
possible positions on the roads are reduced in accuracy or even not modeled at all. (Moreover: Due to the
limited loading capacity of computer hardware, models created using modeling software such as sketchup are
intentionally not particularly detailed.)

® The details and resemblance of the models to the real life buildings are not too high, but the actual locations
are consistents to the real scene, and the buildings are properly scaled. Those properties also apply to the
roads.

4. Involved CG techniques

Design plan: build the 3D map’s models in a modeling software — import the map’s models into OPENGL —
realize the user’s browsings by adjusting the position of the camera — add auxiliary functions such as skybox and

lightings.

4.1 Scene modelings

Building’s and other objects are modelled and exported into model files from sketchup and Blender. The
buildings were divided among the team members to be modelled. Based on the shape of the buildings (whose
geometry is pretty basic), it sufficed to add adjust vertices positions and add edges to get the physical
characteristics of the buildings. After the shapes were modeled, we further optimized the models by adding texture
maps. The other objects such as flowers or trees can be directly imported from the network. Finally, the buildings

are combined together as they will be in the 3D map, according to their actual location, and the file of the combined

2

buildings can be exported after this final integration. The exported model file automatically includes all the
generated vertices, their coordinates, normals, texture coords, and other secondary informations.

[T S ———— 8 =
Tes WET WA U R IRT WO FEWR N wER

v F e PRSP T A PR R R
+6OFN"
| : L3

e wFae

- & Ermmea —

Note : because of OS compatibility, blender was used to model some of the buildings. However, we found some difficulties
to render those models in the same way they are in blender

4.2 Model Loading

The models are loaded using the models importing library, Assimp. We first needed to install and compile
Assimp. https://www.jianshu.com/p/4f3al271ceOb is an online tutorial that helped to do the loading operation.

Before importing the model, the C++ Model and Mesh classes need to be coded in order to be able to load and use
data structures in Assimp. When drawing the models, we need to render the independent meshes that make up the

https://www.jianshu.com/p/4f3a1271ce0b

model, instead of rendering the entire model as a whole. After the definition of the loading’s structure, Assimp’s
loadModel functions can be used to import the model datas, get the indexes array to the model, get each array and
process it, including vertex datas, indexes, material datas, and finally return to us the final structure.

(Note that the imported model’s obj files need to be added an appropriate format to ensure that the rendering

will be performed properly.)

0.0f, 0.0£f)

Instantiate the model Shader, and render the model

4.3 Camera and Main Character

Keys W-A-S-D permit to control the position of camera. The camera moves back and forth, left and right, and
the mouse’s roll controls the zooming.
The camera variable is associated with the input of the W-A-S-D keys, and the input value is immediately fed

into the lookAt function to change the value of the view. In addition, we define global variables to record the

current run time of the simulation to ensure that the frames are refreshed according to the running time, so the
running speed is independent to the system on which it runs.

Mouse rotation changes the angle of view and involves knowledge of Euler angles. Pitch means that the camera
is rotated upwards and downwards, yaw means left and right, and roll means scroll. There is no need to implement
roll here. When the mouse moves, the horizontal and vertical movements represent respectively the values of yaw
and pitch. To compute the rotation angle, we need to know the difference to the current mouse position, so we
continuously store the last position of the mouse. The offset value is then added to the camera's yaw and pitch
values. We set some pertinent maximum and minimum possible values for pitch and yaw, to prevent excessive
rotation.

In order to offer a good game player experience, we bind the position and the main character together. In other
words, the camera ‘s position is always at the back of the main character and the camera initially looks down at the
role and the angle of the view can be changed through the mouse later.

Since we have successfully connect the camera and the hero, now keys W-A-S-D permit to control not only the
position of the camera but also the position of the hero.

4.4 Skybox and Lighting

The skybox is a particular case of a texture box, that is, six texture maps with different orientations are loaded
to the corresponding faces of the texture box. In the process of computing the camera’s transformations in the
previous step, we determined the range of positions that the camera can take to prevent it from moving outside the
skybox.

Lighting — the effects achieved include:

¢ Global Directional lighting

e Point lights implemented as street lights
e Spotlight: the player can use flashlight
e Multi-lights effects

e Different materials reflection properties
¢ Bicycle’s metal effect

e Day and night switching effect

4.4.1 Point Light implementation

e Code Implementation

en using a point light.
ght light, vec3 normal, vec3 fragPos, vec3 viewDir)

l'lt calculates the color
5“"" { vecd CalPointLizht (Poi
vec3d position; {

struct

float COi’lStaHt: float diff = max(dot(normal, lightDir), 0.0);

float linear: // specular shading
: i vec3 reflectDir = reflect(-lightDir, normal);
float quadrat 1€, float spec = pow(max(dot(vi r, reflectDir), 0.0), material. shininess);

attenuation
float distance = length(light.position — fragPos):
at attenuation = 1.0 / ht.constant + light. linear * distance +

vec3 ambient;
vecd diffuse;

vec3 SDE!CUIE]I‘; vecd ambie erial. diffuse, TexCoords));
} = vecd diffuse = ht. diffuse * diff * vec3(texture(material.diffuse, TexCoords)):
: vecd specular = 1i ular # spec * vec3(texture(material. specular, TexCoords)):
ambient *= attenuation;
diffuse *= attenuation;

specular *= attenuation;
return (ambient + diffuse + specular);

e Point Light results

Left : Day + Street lights on Right : Night + Street lights on

4.4.2 Directional Light implementation

e Code Implementation

struct DirLi ght // calculates the color when using a directional light.
{ vec3 CalDirLight (DirLight light, vec3 normal, vec3 viewDir
{

vecd direction;
vec? ambient: vec3 lightDir = normalize(-light. direction);
i // diffuse shading

vecd difoSE; float diff = max(dot (normal, lightDir), 0.0);
) // specular shading

vec3 specular, vec3d reflectDir = reflect(-lightDir, normal);

} H float spec = pow(max(dot(viewDir, reflectDir), 0.0), material.shininess);
// combine results
vec3 ambient = light.ambient # vec3(texture(material.diffuse, TexCoords)};
vee3 diffuse = light.diffuse % diff # vec3(texture(material.diffuse, TexCoords));
vecd specular = lisht. specular # spec * vec3{texture(material. specular, TexCoords)):
return (ambient + diffuse + specular);

e Directional Light results

Left : Directional light is on Right : Directional light is off

4.4.3 Spot Light implementation

e Code Implementation

struet S_p‘OtLl‘g”ht { vec3 CalSpotLight (SpotLight light, vec3 normal, vec3 fragPos, wvec3 viewDir)
e T {

vecd position; vec3 lightDir = normalize(light.position — fragPos);
. - = // diffuse shading
veed direction; float diff = max(dot(normal, lightDir), 0.0);
float CUtOff; // specular shading
float vec3 reflectDir = reflect(-lightDir, normal);
float spec = pow(max (dot (viewDir, reflectDir), 0.0), material.shininess);
ngierCuLOfi, / attenuation

float distance = length(light.position - fragPos);
float attenuation = 1.0 / (light.constant + light. linear * distance +

float constant; light. quadratic # (distance * distance)):

.) // spotlight intensity
float linear; . float theta = dot(lightDir, normalize(-light.direction));
float quadratic; float epsilon = light.cutOff - light. outer :

float intensity = clamp((theta — light.outerCutOff) / epsilon, 0.0, 1.0);
// combine results

vecd ambient; vec3 ambient = light. ambient * vec3(texture(material.diffuse, TexCoords));
i) : ey N o AR : - : : .
veel dlfoSB; vec3 diffuse 711ght diffuse * diff vecB(tehture(mateua}.dlffuse, TexCoords)) ;
vec3 specular = light.specular * spec * vec3(texture(material.specular, TexCoords)):
vecd Specular; ambient #= attenuation * intensity;
} & diffuse #= attenuation * intensity;

specular *#= attenuation * intensity;
return (ambient + diffuse + specular);

e Spot Light results

Left : spot light is off Right : spot light is on

4.5 Physics Engine (basic)

4.5.1 Collision detection

Detects whether the main character collides with other objects, including: collision between cuboids and
collision between cuboid and cylinder.

- BAIEMHERIIK ESabc A NS A N
AERP1 (x1,y1,21)
« BAIATEESRCMRP2 (x2,y2,22) UK

AiliEER S S def |
« XFRATEEE f ! "
. |(x1+a/2)-(x2)|<(a+d)/2 = M.
* |(y1+b/2)-(z2)|<(b+e)/2 57 // e
o |(y1+c/2)-(y2+f/2)|<(c+f)/2 c ,,J--J/ d

o A RIRHAREI A R _

4.5.2 Gravity

Determine whether the model is in a falling state (it is so until it touches the ground’s collision box)

—| ANER (Xx,y,2Z)

I TIEEAIBR

AUMUESERA (x y-t,z)
Blly = y-t
(t HEMTFESE)

4.5.3 Obstacle climbing

The character is allowed to jump over a collision box that doesn’t exceed some maximum height.

APMuER (x,y.2)

{x, y+t, Z)

AR ?
¥ N
N
t> FRIFIEA IS M
Y
W AATE AR
AHixyz) (X y+t.z)

4.6 Material

e Material structure Implementation

struct Material {
sampler?2D diffuse;
sampler2D specular;
float shininess;

i

e Material results

Facade material Lamp post

=

18 18

5. Project contents

The project mainly includes:
Objects and buildings modeling, models importation, design and implementation of physics engine,
implementation of multiple light sources and materials, loading of textures such as skybox. And here is the

structure of the project.

Debug 2019/12/16 20:05
Mapping 2019/12/16 19:53
Objects 2019/12/16 19:53
Packages 2019/12/16 19:53
Release 2019/12/16 19:53
Shaders 2019/12/16 19:53
Textures 2019/12/16 19:53
&3 Mapping.sin 2019/11/13 23:42

e e S si
=

]

J52="Mapping (1 A IEH)
Mapping
=8 5|

[model ground.fs
] model ground.vs
[model loading.fs
LJ vading.vs
[skybox.fs

skybox.vs

tal Textures

P

R

[glad.h

[graph.h
mesh.h

[modelh

[A shader.h

[stb_image.h

s T ~ A~~~ | T

glad.c
+ graph.cpp
*+ main.cpp
*+ stb_image.cpp
*+ wall.cpp

6. Implementation

Week Missions
Week 9 Build the structure of the project code, establish the code communication
platform between team members, and determine the scope of the project.
Week 10 Camera’s position and main character binding,
Perspective transformations with mouse.
Main character behavior: basic movement with WSAD.
Week 11 Learn about library “Assimp” and the header file implementations.
Build up basic model import environment.
Skybox finished.
Week 12 Design the map of our scene, finish all models’ coordinate calibration.

Divide the whole team into two groups: model group and behavior group.
Finish mid-term report.

10

Week 13-14 Model group:
According to the map designed and the positions of every objects, building
all models with Sketchup or Maya.

Behavior group:
Physics engine:jumping, falling, climbing, collision detection.
Finish map path guidance. (to Building A)
Lighting and materials effects implementation.

Week 15 Merge the work of two groups.
Prepare for the final report.

7. Results

{81 Mapping = o

11

®1 Mapping

Mapping

)

12

By

—

. T
NENR NS S

=

g

UEE EEN NEN BN
SEE EEE NN §EN

i Al

TR
i

8. Roles in group

Member Missions
e 1. Build the structure of the project.
2. Camera behaviour and main character behaviour
(Leader) 3. Physics engine:jumping, falling, climbing, collision detection.
4. Map path guidance with Sophie. (to Building A)
e rp ; ISJlebf)x ﬁnished: ‘
. Lighting effects implementation.
3. Materials effects implementation.
N 1. Leader of the Model group.
SRUERR)
2. Design the map of our scene.
3. Building and importing all objects in the scene.
. 1. Build objects in the Model group.
sl 2. Learn about library “Assimp” and the header file implementations and Build

up basic model import environment.
3. Help finish all official reports.

Sophie 1. Build objects in the Model group.
o 2. Help implement Map path guidance function.
() 3. Help finish English reports.

13

References

[LIIXBEE,Z=F,EN, HERN,LEE. @A OpenGL WEIMERRITEXLIUV].ALBEFR RXEER,
2015,42(06):124-130.

(21284, B . JUR = 4EE B U47E OpenGL FRYBIN SRR APIRIGIRITERL 7K,2007(01):83-86+96.

B EF OpenGL HSERMEIIAF[)]. LI =R SIRE,2006(05):576-579.

[4] https://learnopengl-cn.github.io/ LearnOpenGL-CN

[5] https://www.jianshu.com/p/4f3al271ceOb/ Assimp HILERZRFAITELLR

[6] http://ogldev.atspace.co.uk/ OGLDev I OpenGL #7iE

14

https://learnopengl-cn.github.io/

	Project report for the CG 100433 course
	——Tongji Mapping Game
	Team members
	1. Motivation
	2. Goal of the project
	2.1 First Goals
	2.2 Extensions
	2.3 Others(Other features implemented after)

	3. Scope of the project
	4. Involved CG techniques
	4.1 Scene modelings
	4.2 Model Loading
	4.3 Camera and Main Character
	4.4 Skybox and Lighting
	4.4.1 Point Light implementation
	4.4.2 Directional Light implementation
	4.4.3 Spot Light implementation

	4.5 Physics Engine (basic)
	4.5.1 Collision detection
	4.5.2 Gravity
	4.5.3 Obstacle climbing

	4.6 Material

	5. Project contents
	6. Implementation
	7. Results
	8. Roles in group
	References

